

Relative Navigation and Docking of an sUAS and an UGV

Maarten Uijt de Haag and Christian Berth

Special thanks to Eric Suer, Richard Reinfeld, and Jakob Dommaschk

Application Examples

Unmanned Aerial Vehicle (UAV) and Unmanned ground Vehicle (UGV) cooperate to perform a mission. Reliable knowledge of relative pose is one of the requirements for a typical mission.

- → environmental monitoring,
- → infrastructure inspection,
- \rightarrow firefighting,
- → search and rescue,
- → surveillance,
- → law enforcement
- → mapping,
- → agriculture,
- → aerial photography, etc.

Relative Navigation – Knowledge of Separation, Relative Velocity, ...

→ Aviation: broadcast position & velocity repots (ADS-B)

- Difference provides separation: $\mathbf{s}_{AG}(t_k) = \mathbf{r}_A(t_k) \mathbf{r}_G(t_k)$
- And relative velocity: $\mathbf{v}_{AG}(t_k) = \mathbf{v}_A(t_k) \mathbf{v}_G(t_k)$
- o Source: standalone GNSS, SBAS and GBAS
- → Aviation: Alternatively broadcast raw measurements rather than reports
- → Non-aviation: use Real-Time Kinematic GNSS (required base station)

In many environments where a cooperative UAV/UGV would operate, GNSS performance is degraded or even unavailable: urban environments, under-the-canopy (forests), indoor

Solution:

- integration of GNSS with IMU
- imaging sensors and laser scanners with or without inertial measurement units
- beacon-based navigation (i.e., pseudolites, Ultra-wide band or UWB)
- signals of opportunity

Relative Navigation – Knowledge of Separation, Relative Velocity

- → Aviation: broadcast position & velocity repots (ADS-B)
- → Aviation: Alternatively broadcast raw measurements rather than reports
- → Non-aviation: use Real-Time Kinematic GNSS (required base station)
- Aviation: air-to-air range in TCAS via Mode-S
- → Non-aviation: imaging sensors
 - o using features/signature of the target vehicle
 - using Fiducial markers (objects used as reference points)
- → Non-aviation: range radios
- → Non-aviation: 3D imagers
- → Non-aviation: LED beacons, etc.

Using 3D docking port

4

(a) ArUco maker, (b) Apriltag, (c) STags.

Relative Pose using Fiducial Markers and Beacons

Information processing, decision making and action loop

Institute of Aeronautics and Astronautics Chair for Flight Guidance and Air Transport

berl

Perception: Information Collection

	Source	With communication		
		Position/velocity reports	Measurements/corrections	without communication
Α	INS/Altimeter	$\widetilde{\mathbf{r}}_{\!A}$, $\widetilde{\mathbf{v}}_{\!A}$, $\widetilde{\mathbf{r}}_{\!G}$, $\widetilde{\mathbf{v}}_{\!G}$	-	-
В	GNSS	$\widetilde{\mathbf{r}}_{\!A}$, $\widetilde{\mathbf{v}}_{\!A}$, $\widetilde{\mathbf{r}}_{\!G}$, $\widetilde{\mathbf{v}}_{\!G}$	-	-
С	GNSS/INS (EKF)	$\widetilde{\mathbf{r}}_{\!A}$, $\widetilde{\mathbf{v}}_{\!A}$, $\widetilde{\mathbf{r}}_{\!G}$, $\widetilde{\mathbf{v}}_{\!G}$	-	-
D	GNSS SBAS*	$\widetilde{\mathbf{r}}_{\!A}$, $\widetilde{\mathbf{v}}_{\!A}$, $\widetilde{\mathbf{r}}_{\!G}$, $\widetilde{\mathbf{v}}_{\!G}$	-	-
E	GNSS SBAS CSC*	$\widetilde{\mathbf{r}}_{\!A}$, $\widetilde{\mathbf{v}}_{\!A}$, $\widetilde{\mathbf{r}}_{\!G}$, $\widetilde{\mathbf{v}}_{\!G}$	-	-
F	Interferometry*	-	$ ho_{A,k}$, $ ho_{G,k}$	-
G	Interferometry CSC*	-	$ ho_{A,k}$, $\phi_{A,k}$, $ ho_{G,k}$, $\phi_{G,k}$	-
Н	RTK Float	-	$ ho_{A,k}$, $ ho_{G,k}$	-
	RTK Fixed	-	$ ho_{A,k}$, $\phi_{A,k}$, $ ho_{G,k}$, $\phi_{G,k}$	-
J	UWB	-	-	$r_{A,n}$
K	UWB/Altimeter (EKF)	-	$r_{\!A,n}$, $h_{\!A}$, $h_{\!G}$	$r_{\!A,n}$, $h_{\!A}$
L	UWB/Altimeter (PF)	-	$r_{\!A,n}$, $h_{\!A}$, $h_{\!G}$	$r_{\!A,n}$, $h_{\!A}$
Μ	Fiducial marker	-	$\widetilde{\mathbf{r}}_{AG}$, $\widetilde{\mathbf{C}}_{A/G}$	$\widetilde{\mathbf{r}}_{AG}$, $\widetilde{\mathbf{C}}_{A/G}$
:	÷	÷	÷	÷

TU Berlin Test Setup: Unmanned Aerial Vehicle (UAV)

TU Berlin Test Setup: Sensor Board

UWB Decawave design based on previous work.

TU Berlin Test Setup: Unmanned Ground Vehicle (UGV)

810mm

1447mm

tics and Astronautics ice and Air Transport

Perception: Information Collection

	Courses	With communication			
	Source	Position/velocity reports	Measurements/corrections	without communication	
Α	INS/Altimeter	$\widetilde{\mathbf{r}}_A$, $\widetilde{\mathbf{v}}_A$, $\widetilde{\mathbf{r}}_G$, $\widetilde{\mathbf{v}}_G$	-	-	
В	GNSS	$\widetilde{\mathbf{r}}_{A}$, $\widetilde{\mathbf{v}}_{A}$, $\widetilde{\mathbf{r}}_{G}$, $\widetilde{\mathbf{v}}_{G}$	-	-	
L	GINSS/IINS (EKF)	$\widetilde{\mathbf{r}}_{A}$, $\widetilde{\mathbf{v}}_{A}$, $\widetilde{\mathbf{r}}_{G}$, $\widetilde{\mathbf{v}}_{G}$	-	-	
D	GNSS SBAS*	$\widetilde{\mathbf{r}}_A, \widetilde{\mathbf{v}}_A, \widetilde{\mathbf{r}}_G, \widetilde{\mathbf{v}}_G$	System: dynamics model	<u> </u>	
E	GNSS SBAS CSC*	$\widetilde{\mathbf{r}}_A, \widetilde{\mathbf{v}}_A, \widetilde{\mathbf{r}}_G, \widetilde{\mathbf{v}}_G$	$\mathbf{x}(t_k) =$	$= \mathbf{g}[\mathbf{x}(t_{k-1})] + \mathbf{w}(t_k)$	
F	Interferometry*	-	System: measurement model	$-\mathbf{h}[\mathbf{v}(t, \cdot)] + \mathbf{v}(t, \cdot)$	
G	Interferometry CSC*	-	Kalman filter: update step	$-\mathbf{n}[\mathbf{x}(t_k)] + \mathbf{v}(t_k)$	
Н	RTK Float	-	$\mathbf{\hat{x}}(t_k) = \mathbf{\hat{x}}^-(t_k)$) + $\mathbf{K}_k[\mathbf{z}_k(t_k) - \mathbf{h}[\hat{\mathbf{x}}^-(t_k)]]$ $\mathbf{P}^-(t_k)\mathbf{H}^T$	
	RTK Fixed	-	$\mathbf{K}(t_k) = \frac{\mathbf{\Gamma}(t_k)\mathbf{\Pi}}{[\mathbf{H}(t_k)\mathbf{P}^{-}(t_k)\mathbf{H}^{T}(t_k) + \mathbf{R}]}$		
J	UWB	-	$\mathbf{P}(t_k) = [\mathbf{I}_k]$	$\mathbf{I} - \mathbf{K}(t_k)\mathbf{H}(t_k)]\mathbf{P}^-(t_k)$	
К	UWB/Altimeter (EKF)	-	$\hat{\mathbf{x}}^{-}(t, \cdot) =$	$\hat{\mathbf{x}}(t, \mathbf{x}) + \int_{-\infty}^{t_k} \boldsymbol{\sigma}(\hat{\mathbf{x}}, t) dt$	
L	UWB/Altimeter (PF)	-	$\mathbf{x}_{(k)} = \mathbf{x}_{(k)}$	$\int_{t_{k-1}} \mathbf{D}(t_{k-1}) $	
M	Fiducial marker	_	$\mathbf{P} (t_k) \equiv \mathbf{\Psi}$ $+ \int_{-\infty}^{t_k} \mathbf{\Phi}(t) dt$	$(\iota_{k-1})\mathbf{r}(\iota_{k-1})\mathbf{\Psi}^{T}(\iota_{k-1})$ $(t)\mathbf{O}(t, \mathbf{h}\mathbf{\Phi}^{T}(t, - t)dt$	
:		:	$\int_{t_{k-1}} \Phi(t_k)$	•	

Included in the eventual implementation for terminal guidance (< 3m)

GNSS-based relative position and velocity estimation

GNSS-based relative position and velocity estimation

RR-based positioning

Must also evaluate the geometry of the problem because it is ill-conditioned for longer distance between both vehicles ✤ Measurement equation:

$$\tilde{r}_{A,n}(t_k) = \left\| \mathbf{r}_A - \mathbf{r}_{G,n} \right\| + v_{uwb} \qquad \left\| \mathbf{r}_A - \mathbf{C}_b^n \mathbf{r}_{G,n}^b \right\|$$

✤ Linearization (way more than GNSS):

$$\mathbf{H} = \begin{bmatrix} \mathbf{e}_{G,1}^T \\ \vdots \\ \mathbf{e}_{G,N}^T \end{bmatrix} \quad \mathbf{e}_{G,n} = \begin{bmatrix} x_A - x_{G,n} & y_A - y_{G,n} \\ \|\mathbf{r}_A - \mathbf{r}_{G,n}\| & \|\mathbf{r}_A - \mathbf{r}_{G,n}\| \end{bmatrix}^T$$

- → Standard WLS: $\hat{\mathbf{x}} = (\mathbf{H}^{\mathsf{T}}\mathbf{W}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{W}\mathbf{z}$
- ↔ With altimeter included:

$$\mathbf{H} = \begin{bmatrix} \mathbf{e}_{G,1}^T \\ \vdots \\ \mathbf{e}_{G,N}^T \\ \begin{bmatrix} \mathbf{0} & \mathbf{0} & 1 \end{bmatrix}$$

Simulation Scenario

→ After detection of the UGV, the UAV flies an arc at constant altitude, then descents and lines up with the predicted UGV trajectory after which it keeps pace and slowly descents on the UGV platform.

Inertial-only and GNSS-standalone

✤ Exchange of position reports

17

blue: East-direction, red: North-direction, orange: up-direction

Space-based Augmentation Receivers

Institute of Aeronautics and Astronautics Chair for Flight Guidance and Air Transport berlir

Use of Interferometry Approach (shown earlier)

Instead of using CSC, smoothing can also take place here using $\mathbf{s}_{filt}(t_m) = (1 - K)\hat{\mathbf{s}}^n(t_k) + K[\mathbf{s}_{filt}^n(t_{k-1}) + \Delta\hat{\mathbf{s}}^n(t_k)]$

UWB RR Solution - WLS

Alternatively: use of a non-linear solver

RR/Altimeter Integration

Summary and Conclusions

- → Review of relative navigation approaches between a UAV and a moving UGV supporting the final approach and lading phases of the flight.
- → General approach to address the problem and that allows for several methods to be incorporated.
- ✤ Introduction of a RR-based and RR/altimeter-based solution.
- → Simulation results were shown to illustrate what accuracies can be achieved by some of the discussed approaches.
- → RR-based methods can be used for this application but do require augmentation to obtain dm-level accuracies during the final 10m.
- ✤ Next: finalize the research setup and evaluate some of the approaches using actual data

